Welcome to the 19th IEEE Radio & Wireless Week (RWW) in San Antonio, TX, USA! The city is located in the heart of Texas and is known for an eclectic mix of Mexican, German, French, and Old West cultures that combine to create an “only in San Antonio” experience. The conference venue Grand Hyatt San Antonio River Walk celebrates the history and charm of the Alamo City with a welcoming spirit and an elegant style. The hotel is located right on the River Walk in downtown San Antonio, steps from top attractions like the Alamodome, AT&T Center and The Alamo.

Over the years, RWW has become an icon of “January family reunion” for the wireless and microwave community from all over the world to discuss the latest trends based on five co-located conferences: the IEEE Topical Conference on Power Amplifiers for Wireless and Radio Applications (PAWR), the Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), IEEE Space Hardware and Radio Conference (SHaRC), and Radio and Wireless Symposium (RWS). Each topic-conference has its focus days: PAWR on Monday, SiRF on Monday and Tuesday, WiSNet and SHaRC on Wednesday, all of which take place along with RWS sessions Monday through Wednesday. This core technical program is strengthened by several workshops, technical panels, and short courses to address the latest trends in radio and wireless.

The 2024 class of MTT-S Distinguished Microwave Lecturers will present their talks during a dedicated track on Monday morning, which is a perfect opportunity to get a comprehensive overview on some topic areas. Professional panel sessions of female and young professional role models will be again organized by the Women in Microwave and Young Professional teams on Sunday night. Two world renowned keynote speakers will give their insights during the plenary session on Tuesday morning, where the winners of the student paper competition will also be awarded. Attendees are also welcome to a PAWR/ARFTG joint panel and a Space Night on Monday and Tuesday nights, respectively.

Besides four exciting technical workshops on Sunday afternoon, an entrepreneurial workshop “From Lab to Market: Empowering Researchers for Entrepreneurial Success” will be open to all conference attendees on Monday afternoon. For the first time, MTT-S is organizing an information session to “Demystify the IEEE Fellow Nomination” on Monday afternoon. RWW is also very proud to announce the collaboration with the editorial offices of the IEEE Transactions on Microwave Theory and Techniques (T-MTT), IEEE Microwave and Wireless Technology Letters (MWTL), and IEEE Journal of Microwaves (JM), which offer journal/letter authors of the past year opportunities to present at RWW and enjoy professional interaction with conference attendees.

The ARFTG is again co-locating their conference with RWW. Besides the ARFTG conference with technical papers and short courses, a joint ARFTG & RWW exhibition will be hosted to showcase the latest products and solutions from industry. The exhibition floor will also highlight an industry reception open to all conference attendees, as well as a demo track. ARFTG and PAWR are also hosting a joint panel session on Monday night. Another highlight is the co-located Internet of Things (IoT) summit, one of the very successful collaborations of RWW with other communities.

At this moment, we would like to warmly welcome you and thank you for coming to RWW 2024. We wish you enjoy the week in San Antonio!

RWW2024 General Chair,
Changzhi Li, Texas Tech University

Dear colleagues, RWW and ARFTG participants, it is a great pleasure to welcome you at another edition of the famous radio wireless week! Our technical program committee managed to put together a very attractive program to ensure fruitful exchange and establish collaboration links between scientific community, industry and academia, young professionals, and radio enthusiasts. The committee members have identified many timely conference topics and defined the format of special technical events. Based on the success from past years, specific panel sessions, workshops or hands-on activities and summits are held again, bringing the main players together to share the latest results from wide spectrum of RF fields in an interactive way.

Beside the technical program, also check the timing for social events, networking and lite receptions that are the unique opportunities for technical exchange, dissemination of your research outcomes and promotion of radio-wireless technologies and techniques worldwide!

RWW is also an important platform for the technical and professional development of young professionals and students. Based on the initial evaluation by the TPC, a group of finalists were selected to participate in the student paper competition, which will feature both elevator pitch presentations and interactive forum discussions. Don’t miss out on the opportunity to meet these bright young researchers! The best student papers will be recognized during the plenary session.

Let me finish this welcome message with the famous quote of Edward Everett Hale, suitable not only to RWW newcomers – “Coming together is a beginning, keeping together is progress, working together is success!”

RWW2024 Technical Program Chair,
Václav Valenta, European Space Agency

Welcome Messages

GREETINGS FROM THE GENERAL CHAIR OF RADIO & WIRELESS WEEK 2024

General Chair
Changzhi Li

RWW2024 Technical Program Chair’s Welcome Message

TPC Chair
Václav Valenta
Welcome Messages

RWW 2024 STEERING COMMITTEE

General Co-Chair: Holger Maune
TPC Chair: Václav Valenta

General Chair: Changzhi Li, Texas Tech University

General Co-Chair: Holger Maune, Otto-von-Guericke-Universität Magdeburg

Technical Program Chair: Václav Valenta, European Space Agency

Finance Chair: Roberto Gomez-Garcia, University of Alcala

Topical Conferences:

PAWR Co-Chairs: Vittorio Camarchia, Politecnico di Torino
John Dooley, Maynooth University

WiSNet Co-Chairs: Paolo Mezzanotte, University of Perugia
Fabian Lurz, Otto-von-Guericke-Universität Magdeburg

SHA RC Co-Chairs: Marie Piasecki, NASA Glenn Research Center
Jan Budroweit, German Aerospace Center

SiRF Chair: Robert Schmid, Johns Hopkins Applied Physics Lab

Distinguished Microwave Lecturers Chair: Markus Gardill, Brandenburg University of Technology

Workshops Chairs: Jan Budroweit, German Space Agency
Pushkar Bajirao Kulkarni, Qualcomm

Technical Lectures: Juan A. Becerra, Universidad de Sevilla

IoT Summit Liaison: Charlie Jackson, Northrop Grumman
Jasmin Grosinger, Graz University of Technology

Women in Engineering Chair: Jasmin Grosinger, Graz University of Technology

Student Paper Contest Co-Chairs: Ken Kolodziej, MIT Lincoln Laboratory
Ifana Mahbub, UT Dallas

Student Initiative Chair: Michael Chung-Tse Wu, Rutgers University

University Demo Chair: Mario Pauli, Karlsruhe Institute of Technology

Young Professionals Chair: Davi Rodrigues, Texas Tech University

Publications Chair: Markus Gardill, Brandenburg University of Technology
Glauco Fontgalland, Universidade Federal de Campina Grande

Publicity Co-Chairs: Venkata Vanukuru, GlobalFoundries
Eduardo Rojas-Nastrucci, Embry-Riddle Aeronautical University

Microwave Magazine Special Issue Editors: Chia-Chan Chang, National Chung-Cheng University

MTT Transactions Mini Special Issue Editors: Václav Valenta, European Space Agency

Exhibition/Sponsorships Chair: Elsie Vega, IEEE MCE
Susie Horn, SMH Consulting

RWW Executive Committee Chair: Robert Caverly, Villanova University

Conference Management: Elsie Vega, IEEE MCE
Cassandra Carollo, IEEE MCE

Visa Letters: Cassandra Carollo, IEEE MCE

Webmasters: Min Hua, RaySilica
Joel Arzola, Raytheon Technologies

At Large (Advisors): Alexander Koelpin, Hamburg University of Technology
Kevin Chuang, Analog Devices
Nuno Borges Carvalho, Universidade de Aveiro
Rashaunda Henderson, University of Texas at Dallas
RWS2024 Chair
Changzhi Li, Texas Tech University

RWS2024 Co-Chair
Holger Maune, Magdeburg University

RWS2024 Technical Program Committee
- **High-speed and Broadband Wireless Technologies:** Upkar Dhallwal, Jennifer Kitchen, Masaaki Koijma, Jing Wang, Muh-Dey Wei, Dietmar Kissinger, Kevin Chuang
- **Emerging Wireless Technologies & Novel Engineered Materials:** Hyun Kyu Chung, Alessandro Cidonialii, Ahmad Hoorfar, Sangkil Kim, Syed Abdullah Nauroze, Spyridon Pavlidis, Junyu Shen, Hjalti Sigmarsson
- **Wireless System Architecture and Propagation Channel Modeling:** Juan Antonio Becerra, Ugo Dias, Aly Fathy, Paulo Ferreira, Maria J. Madero-Ayora, Chenming Zhou, Pravin Premakanthan
- **Wireless Digital Signal Processing and Artificial Intelligence:** Nuno Carvalho, Markus Gardill, Rui Ma, Eiji Okamoto, Arnaldo Oliveira, Ken Kolodziej, Pushkar Kulkarni
- **Applications to Bio-Medical, Environmental, and Internet of Things:** Chia-Chan Chang, Robert Caverly, Syed Islam, Mohammad-Reza Tofighi, Chau Yuen, Changzhan Gu, Daniel Rodriguez, Jenshan Lin
- **Antenna Technologies, MIMO and Multi-Antenna Communications:** Wasif Khan, Darush Mirshekar, Jiang Zhu, You Zou, Rashaunda Henderson, Jeremy Muldavin, Edward Niehenke
- **Passive Components & Packaging:** Roberto Gomez-Garcia, T.-S. Jason Horng, Dimitra Psychogiou, Yu-Chen Wu, Li Yang, Jong Gwan Yook, Bayaner Arigong, Stanley Ang, Sai-Wa Wong
- **MM-Wave to THz Systems & Applications:** Shanthi Bhagavathesevaran, Yi-Jan (Emery) Chen, David Delrio, Nathalie Deltimple, Glaucio Fontgalland, Minoru Fujishima, Renato Negra, Hiroshi Okazaki, Sergio Pacheco, Xin Wang, Xinwei Wang, Yu Ye

PAWR2024 Chair
Vittorio Camarchia, Politecnico di Torino

PAWR2024 Co-Chair
John Dooley, Maynooth University

PAWR2024 Technical Program Committee
- **Modeling and Characterization:** Ehsan Azad, Filipe Barradas, Vittorio Camarchia, Stephen Maas, Jose Pedro, Zoya Popovic, Patrick Roblin, David Runton, Kefei Wu,
- **Advanced Circuit Design and Topologies:** Paolo Colantonio, Nathalie Deltimple, Paolo de Falco, Jose A. Garcia, William Hallberg, Wolfgang Heinrich, Bumman Kim, Chao Lu, Anna Picicello, Francesc Puroy, Frederick Raab,
- **Packaging and Reliability:** Florinel Balteanu, Robert Caverly, Murat Eron, Ming Ji, Chang-Ho Lee, Don Lie

WiSNet2024 Chair
Rahul K Hanna, Intel

WiSNet2024 Co-Chair
Paolo Mezzanotte, University of Perugia

WiSNet2024 Technical Program Committee
- **Wireless Sensors for IoT Communication and Applications:** Georg Fischer, Tuam Lasri, Federico Alimenti, Reinhard Feger, Davi Valerio de Queiroz Rodrigues
- **Wireless Sensors for Radar, Positioning, Tracking, and Imaging:** Alexander Koelpin, Paolo Mezzanotte, Changzhi Li, Zahir Alsulaimawi, Arne Jacob, Mario Pauli, Hendrik Rogier, Valentina Palazzi, Spyridon Daskalakis
- **Wireless Sensors Circuits & System Technologies:** Alessandra Costanzo, Diego Masotti, Wang Wang, J.-C Chiao, Serioja Tatu, Fabian Lurz, Guoan Wang
- **WSN Hardware-Software CoDesign:** Amr Fahim, Manos Tentzeris, Jennifer Williams, Kamal Samanta, Nils Pohl, Emanuele Cardillo
- **Innovations in Wireless Sensor Networks:** Marco Dionigi, Rahul Khanna, Luciano Terricone, Maurizio Bozzi, Xianming Qing, Kai-Ten Feng, Xuyu Wang

Power Amplifiers for Radio and Wireless Applications (PAWR)

Power amplifiers are often the most critical component of RF/microwave communications systems and consequently the focus of intense research to achieve increased linearity and power efficiency. New forms of power amplification are being developed to meet the needs of the wireless communication equipment industry and the world’s demand for greater information transmission. PAWR2024 will feature innovative work in (but not limited to) the following areas of RF/microwave power amplifier technology:

- High Power/Wideband Active Devices
- Power Amplifiers for Mobile, Avionics and Space
- Modeling and Characterization
- Advanced Circuit Design and Topologies
- Green Power Amplifier Technology
- Integration Technology
- Packaging and Reliability
- Linearization and Efficiency Enhancement Techniques
- Applications, Novel Architectures and System Analysis

PAWR2024 Chair
Vittorio Camarchia, Politecnico di Torino

PAWR2024 Co-Chair
John Dooley, Maynooth University

PAWR2024 Technical Program Committee
- **Modeling and Characterization:** Ehsan Azad, Filipe Barradas, Vittorio Camarchia, Stephen Maas, Jose Pedro, Zoya Popovic, Patrick Roblin, David Runton, Kefei Wu,
- **Advanced Circuit Design and Topologies:** Paolo Colantonio, Nathalie Deltimple, Paolo de Falco, Jose A. Garcia, William Hallberg, Wolfgang Heinrich, Bumman Kim, Chao Lu, Anna Picicello, Francesc Puroy, Frederick Raab,
- **Packaging and Reliability:** Florinel Balteanu, Robert Caverly, Murat Eron, Ming Ji, Chang-Ho Lee, Don Lie

Linearization and Efficiency Enhancement Techniques: Taylor Barton, Juan A. Becerra, Wenhua Chen, Kevin Chuang, Armando Cova, Christian Fager, Pere Gilbert, Allen Katz, Morten Olavsbørd, Anding Zhu

Wireless Sensors and Sensor Networks (WiSNet)

Wireless sensors and wireless sensor networks are crucial components for manufacturing, structural health, security monitoring, environmental monitoring, smart agriculture, transportation, commercial applications, localization, tracking systems and other important and emerging applications. WiSNet2024 is intended to stimulate discussion and foster innovation on these components and applications.

WiSNet2024 Chair
Rahul K Hanna, Intel

WiSNet2024 Co-Chair
Paolo Mezzanotte, University of Perugia

WiSNet2024 Technical Program Committee
- **Wireless Sensors for IoT Communication and Applications:** Georg Fischer, Tuam Lasri, Federico Alimenti, Reinhard Feger, Davi Valerio de Queiroz Rodrigues
- **Wireless Sensors for Radar, Positioning, Tracking, and Imaging:** Alexander Koelpin, Paolo Mezzanotte, Changzhi Li, Zahir Alsulaimawi, Arne Jacob, Mario Pauli, Hendrik Rogier, Valentina Palazzi, Spyridon Daskalakis
- **Wireless Sensors Circuits & System Technologies:** Alessandra Costanzo, Diego Masotti, Wang Wang, J.-C Chiao, Serioja Tatu, Fabian Lurz, Guoan Wang
- **WSN Hardware-Software CoDesign:** Amr Fahim, Manos Tentzeris, Jennifer Williams, Kamal Samanta, Nils Pohl, Emanuele Cardillo
- **Innovations in Wireless Sensor Networks:** Marco Dionigi, Rahul Khanna, Luciano Terricone, Maurizio Bozzi, Xianming Qing, Kai-Ten Feng, Xuyu Wang

RWW Topical Conferences
The IEEE Space Hardware and Radio Conference (IEEE SHaRC) addresses new concepts, novel implementations, as well as emerging applications for space-based hardware for communications, earth observation, and other novel disruptive services. To meet recent needs, there has been a renaissance of interest and investment in space- and suborbital-based systems especially for high-data-rate communications networks. These new global satellite networks are disruptive, rely on new system and subsystem design paradigms, and are an enabler for many novel applications. The IEEE Space Hardware and Radio Conference provides a forum for discussions on this new frontier.

SHARC2024 Chair
Marie Piasecki, NASA Glenn Research Center

SHARC2024 Co-Chair
Jan Budroweit, German Aerospace Center

SHARC2024 Technical Program Committee

Systems, Hardware, and Electronics for Space:
Thomas Ussmueller, Nuno Carvalho, Jasmin Grosinger, Ramesh Gupta, James McSpadden, Steven Reising, Steven Rosenau, Rick Sturdivant, Vaclav Valenta, Robert Weigel, Markus Gardill, Federico Clazzer

Mission Concepts, Operations, Regulation, and Standardization:
Jan Budroweit, Goutam Chattopadhyay, Rudy Emrick, Dale Force, Charles Jackson, Holger Maune, Thomas Roystor, Klaus Schilling, Zizung Yoon, Sachidananda Babu, Dustin Schroeder, Marwan Younis

SILICON MONOLITHIC INTEGRATED CIRCUITS IN RF SYSTEMS (SiRF)

SiRF2024 will mark the 24th topical meeting on SiRF, with a renewed emphasis on promoting a dialogue between IC designers and researchers promoting non-standard technologies, exploiting the maturity of Silicon processes, but addressing the challenges of tomorrow. The three days of SiRF2024 will chronicle recent advances in our dynamic field, and provide the platform for developing new ideas, and candid exchange, facilitated by SiRF's single-session format. As in past years, a line-up of reputed invited speakers will stimulate our discussions, with an emphasis on emerging technologies.

SiRF2024 Chair
Robert Schmid, Johns Hopkins Applied Physics Lab

SiRF2024 TPC Chair
Mehmet Kaynak, Texas Instruments

SiRF2024 TPC Co-Chair
Ickhyun Song, Hanyang University

SiRF2024 Executive Committee

SiRF2024 Technical Program Committee

RF, Millimeter-wave and THz Integrated Circuit Front Ends:
Amit Jha, Michael Oakley, Ickhyun Song, Cagri Ulusoy, Robert Schmid, Roeee Ben Yishay, Rahul Kodkani, Austin Chen, Christopher Coen

Wireline Communication Circuits and Silicon-Photonics Integrated Circuits:
Saeed Zeinolabedinzadeh, Juergen Hasch, Vadim Issakov, Aleksey Dyskin, Ankur Guha Roy

High Speed Data Converters & Mixed Signal Circuits:
Wei-Min (Lance) Kuo, Hsieh-Hung Hsieh, Monte Miller, Chien-Nan Kuo, Arindam Sanyal

Devices, Materials, Modeling, and Measurement:
Mehmet Kaynak, Ming-Ta Yang, Katsuyoshi Washio, Julio Costa, Jean-Pierre Raskin, Pierre Blondy, Venkata Malladi, Vikas Shilimkar, Florian Herrault, Xun Gong

The Seventh IEEE Internet of Things (IoT) Vertical and Topical Summit at Radio & Wireless Week (RWW) 2024 is devoted to biomedical IoT applications. Technologies for sensing, signal processing and computing, data storage, and communications are important ingredients in architecting biomedical solutions that are important to human health and human well-being. There are at least five aspects to biomedical IoT applications that are important for the general population. They include the following:

- The practice of medicine
- Public health
- Personal lifestyle
- Environmental exposure
- Biomedical research

Many of the advancements in the field have significantly benefited from the pace of innovation in the capabilities and performance improvements in electronics and the exploitation of methods and techniques for measuring and generating electromagnetic signals across the spectrum - from light to microwave frequencies. They have also benefited from the ability to create new materials, miniaturize electronic components, embed sophisticated signal processing and computation in devices, and lastly, harness new sensing and actuation methods, such as the uses of microelectromechanical systems and microfluidic devices, and new data interpretation techniques, such as the breakthroughs in artificial intelligence (AI) and machine learning (ML) algorithms. The applications range from personal wearables, widely available as consumer goods, to specialized medical instrumentation focused on specific diseases or conditions. They cover the detection of pathogens in our environment, the direct monitoring and management of chronic disease symptoms, and ways of dealing with human impairments through devices that restore or enhance body functions. The science and engineering involved are multidisciplinary and require collaboration between technical and professional disciplines and communities of practice.
REGISTRATION HOURS:
Registration will be open during the following times in the Texas Ballroom Foyer:

- Sunday, 21 January 2024 7:00AM - 6:00PM
- Monday, 22 January 2024 7:00AM – 6:00PM
- Tuesday, 23 January 2024 7:00AM - 4:00PM

EXHIBIT HOURS:
The joint RWW/ARFTG Exhibition area will be open during the following times:

- Monday, 22 January 2024 1:00PM – 7:00PM
- Tuesday, 23 January 2024 9:00AM – 5:00PM

Please refer to the conference website at http://www.radiowirelessweek.org/exhibits for the latest information and details on how to become a sponsor and exhibit at RWW.

SOCIAL EVENTS, NETWORKING, AND LITE RECEPTIONS:

- Joint RWW/ARFTG Welcome Reception Monday, 22 January 2024 5:30PM – 6:30PM Location: Exhibit Hall – Texas Ballroom
- Sunday 21 January 2024 before the WiM event in Bowie
- Tuesday 23 January 2024 at 5:30 PM before the MTT Space Night event in the Texas B

SPONSORS

Gold Sponsors

- Accurate Circuit Engineering (Gold Sponsor)
- Virginia Diodes, Inc. (Gold Sponsor and Hotel Key Card)

Sponsors

- AMCAD Engineering
- Berkeley Nucleonics Corporation
- Junkosha, Inc.
- Microsanj
- MPI Corporation
- Rohde & Schwarz USA Inc.
- TMY Technology Inc.
- Anritsu
- Eravant
- Maury Microwave Corp.
- Mitsubishi Electric US
- Qorvo (Delegate Bag)
- SPINNER GmbH
<table>
<thead>
<tr>
<th>Time</th>
<th>Room: Crockett AB</th>
<th>Room: Crockett CD</th>
<th>Room: Republic A</th>
<th>Room: Republic BC</th>
<th>Room: Seguin AB</th>
<th>Room: Bowie</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Workshop RF and Millimeter-Wave Communication Systems: Design and Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>Workshop Power Amplifier Design and Linearization Techniques</td>
<td>Workshop Ground Stations and Advanced Ground Station Networks</td>
<td>Workshop mmW-OAI: The Easiest Way to Establish a 5G FR2 End-to-End Test Network</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:00</td>
<td>Workshop mmW-OAI: The Easiest Way to Establish a 5G FR2 End-to-End Test Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21:30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Event Overview • Sunday, 21 January 2024**
- **Room:** Crockett AB
- **Room:** Crockett CD
- **Room:** Republic A
- **Room:** Republic BC
- **Room:** Seguin AB
- **Room:** Bowie

Workshop RF and Millimeter-Wave Communication Systems: Design and Analysis

Workshop Power Amplifier Design and Linearization Techniques

Workshop Ground Stations and Advanced Ground Station Networks

Workshop mmW-OAI: The Easiest Way to Establish a 5G FR2 End-to-End Test Network

Women in Microwaves

YP Panel Reception
Event Overview • Monday, 22 January 2024

<table>
<thead>
<tr>
<th>Time</th>
<th>Room</th>
<th>Event</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>Texas A</td>
<td>MTT-S Distinguished Microwave Lecturers’ Talks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texas B</td>
<td>PAWR Mo1B Advanced Circuit Design and Topologies - 1</td>
<td></td>
</tr>
<tr>
<td>9:40</td>
<td>Texas C</td>
<td>SIRF Mo1C Power Amplifiers</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crockett AB</td>
<td>RWS Mo3A High-speed and Broadband Wireless Technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Republic</td>
<td>ARFTG Users Forum 1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seguin AB</td>
<td>ARFTG Short Course</td>
<td></td>
</tr>
<tr>
<td>10:10</td>
<td>Texas A</td>
<td>PAWR Mo2B Modeling and Characterization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texas B</td>
<td>SIRF Mo2C Phase Shifters and Tunable Components</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texas C</td>
<td>WISNET Panel RFID as a Sustainable Route to Digital Twins</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crockett AB</td>
<td>ARFTG Users Forum 2</td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td>Texas D-F</td>
<td>RWW / ARFTG Joint Reception</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>Republic</td>
<td>Exhibition</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td>Texas A</td>
<td>RWS Mo3A High-speed and Broadband Wireless Technologies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texas B</td>
<td>PAWR Mo3B Advanced Circuit Design and Topologies - 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Texas C</td>
<td>SIRF Mo3C Millimeter-Wave Signal Generation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Crockett AB</td>
<td>Student Paper Contest Elevator Pitches</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Republic</td>
<td>ARFTG General Session</td>
<td></td>
</tr>
<tr>
<td>15:10</td>
<td>Texas D-F</td>
<td>ARFTG Short Course</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:40</td>
<td>Republic</td>
<td>Student Paper Contest Interactive Forum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:20</td>
<td>Republic</td>
<td>ARFTG General Session</td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td>Republic</td>
<td>Student Paper Contest Interactive Forum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18:30</td>
<td>Republic</td>
<td>RWW / ARFTG Joint Reception</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td>Republic</td>
<td>PAWR / ARFTG Joint Panel</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Room: Texas A</td>
<td>Room: Texas B</td>
<td>Room: Texas C</td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>8:00</td>
<td>RWS Tu1A</td>
<td>SIRF Tu1B</td>
<td>SIRF Tu1C</td>
</tr>
<tr>
<td></td>
<td>Antenna and Beam-forming Technologies</td>
<td>Amplifier Design</td>
<td>Radar and Sensor Circuits and Architectures</td>
</tr>
<tr>
<td>9:40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:50</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:10</td>
<td>RWS Tu3A</td>
<td>SIRF Tu3C</td>
<td>ARFTG</td>
</tr>
<tr>
<td></td>
<td>Antenna and Beam-forming Technologies</td>
<td>Voltage-Controlled Oscillators</td>
<td></td>
</tr>
<tr>
<td>15:40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:20</td>
<td>Space Night</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17:30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19:30</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Event Overview • Wednesday, 24 January 2024

Room: Texas A
- **RWS We1A** Wireless Digital Signal Processing and Artificial Intelligence
- **WisNet We1B** Wireless Sensing and Localization Concepts
- **SHaRC We1C** Microwave Subsystems and Antennas for Space

Room: Texas B
- **RWS We2A** Passive Components and Filters
- **WisNet We2B** Recent Developments of Smart Radar Sensors
- **SHaRC We2C** Space Communication Systems

Room: Texas C
- **RWS We3A** Emerging Wireless Technologies
- **WisNet We3B** Advanced Signal Processing and Machine Learning Concepts in Radar Sensing
- **Short Course** Characterization of MMIC DPAs: from wafer screening to system level

Room: Republic A
- **ARFTG Workshop**

Room: Republic B
- **IoT Summit**

Room: Republic C
- **Short Course** High Efficiency CMOS Power Amplifiers: Design Challenges and Outlook
<table>
<thead>
<tr>
<th>Workshop</th>
<th>RF and Millimeter-Wave Communication Systems: Design and Analysis</th>
<th>Power Amplifier Design and Linearization Techniques</th>
<th>Ground Stations and Advanced Ground Station Networks</th>
<th>mmW-OAI: The Easiest Way to Establish a 5G FR2 End-to-End Test Network</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organizer</td>
<td>Mathworks</td>
<td>Pushkar Kulkarni, Qualcomm</td>
<td>Jan Budroweit, DLR</td>
<td>Grace Ho, Tmytek</td>
</tr>
<tr>
<td>Room</td>
<td>Crockett AB</td>
<td>Crockett CD</td>
<td>Republic BC</td>
<td>Republic A</td>
</tr>
</tbody>
</table>

Abstract:

RF and Millimeter-Wave Communication Systems:
The current trend for wireless systems to operate at millimeter wave (mmWave) frequencies and over wide bandwidth drives challenging requirements for RF front ends. In this webinar, you will learn how MATLAB and Simulink can be used for modeling RF and mmWave transceivers, performing RF budget analysis, and simulating wideband adaptive architectures. We will first address typical RF data analysis tasks, such as reading and writing Touchstone files, transforming, visualizing, and fitting S-parameters for distributed elements. As a second step, we will discuss how to model and simulate amplifiers, matching networks, and antenna arrays operating at mmWave frequencies. Using virtual prototypes, we will simulate wideband transmitters and receivers including co-existence and interference scenarios, beam-squinting and antenna coupling, and dynamic EVM measurements for different communications standards such as 5G FR2.

With practical examples, we will demonstrate how to optimize baseband signal processing algorithms and control logic together with RF transceivers to compensate for RF impairments, to increase resilience to interfering signals, and to support multiple communication standards.

Power Amplifier Design and Linearization Techniques:
PA design paradigm changes from mm-wave to sub-mm-wave frequencies. We will look at the device technology (Si and III-V) capabilities and the amplifier architectures, derive compact transistor modeling and its translation to system figures of merit. The device level reliability mechanisms, its circuit-level impacts and the architecture-level mitigation techniques, including the case for PMOS based PAs will be discussed. We will survey the sub-mm-wave PA designs which tend to be simpler architectures with power combining and more stages, with class-A bias and lesser harmonic control. These exacerbate the reliability, stability and thermal concerns.

Ground Stations and Advanced Ground Station Networks:
Ground stations are the backbone for any kind of satellite communication. The evolution of those terrestrial satellite communication infrastructures has become extremely diverse from classic ground stations as everyone knows with big dishes for deep space communication, small ground stations on the rooftop of university buildings as well as new technologies such as inter satellite link communication for 24/7 access to low Earth orbit satellites. In this workshop we will provide a great set of speakers with insights from different perspectives, incl. space agencies, academia and commercial services.

mmW-OAI: The Easiest Way to Establish a 5G FR2 End-to-End Test Network:
Do you happen to have one or two spare SDRs on hand? Have you ever thought about establishing a complete 5G FR2 end-to-end network with your SDRs? TMYTEK will introduce the mmW-OAI BOX, an FR2-enabled OAI testbed that TMYTEK worked on with Allbesmart. It is worth noting that this solution has already been delivered to Japan. Incorporating the best of millimeter-wave and OpenAirInterface (OAI), we provide a comprehensive test environment from UE to the core network. The mmW-OAI BOX offers 5G beamformers to mimic gNB and UE array antennas, a frequency converter, a powerful PC installed with the latest OAI stack, including OAI gNB, CN5G, a dashboard, and more.

We will show you how to use the APIs to control TMYTEK FR2 devices, including a 24-44 GHz up/down converter (UD Box) and a 28 GHz mmWave beamformer (BBox), with your SDR development environment. This will include an API introduction, control calls, DLL imports, and more.

There are many topics that need to be addressed in wireless research. We have built the most advanced tools to unleash your creativity, so you are able to develop innovative solutions for the next generation of wireless technology.
The Women in Microwaves (WiM) event at the upcoming IEEE Radio & Wireless Week (RWW) 2024 will spotlight distinguished women who have advanced the field of microwave theory and technology considerably. Three outstanding women in microwaves will talk about their respective research fields and careers. A light reception will accompany the event, allowing us to network and connect. Prof. Lei Guo from the Dalian University of Technology, China, will talk about Wireless Power Harvesters: A Charging Solution for IoT Applications. Dr. Kiki Ikossi, a 2020-2022 ASEE Science and Technology Policy Fellow at the National Science Foundation, Alexandria, VA, USA, will give details on Semiconductors for GHz to THz Devices. And Sara Barros from Thales Nederland B.V., The Netherlands, will dive deep into The Evolution of Surface Radar and Naval Platform Integration.

Wireless Power Harvesters: A Charging Solution for IoT Applications

Speaker: Lei Guo, Dalian University of Technology, China

Abstract: The realization of Internet-of-Things (IoT) relies on a large amount of geographically distributed wireless sensor nodes (WSNs). Traditional power supply cords prevent the large-scale utilization and mobility of the WSNs, while the batteries as substitutes for supply cords are not optimal solutions due to the limited lifetime, high cost, and undesired ecological effects. In this scenario, wireless power harvesting technologies provide a new approach to remotely charging or powering WSNs. This talk will discuss analytical methods for evaluating and designing radio frequency (RF) power harvesters by considering the wide adaptability to frequencies, input power, and load conditions. Based on the analysis, high-efficiency multi-band or wide-power-range RF power harvester systems will be designed and discussed. The feasibility of the proposed RF power harvesters will also be demonstrated in a real low-power wireless sensor platform. The proposed wireless power harvesting techniques have the potentials to be implemented in IoT applications where powering issues are critical.

Semiconductors for GHz to THz Devices

Speaker: Kiki Ikossi, 2020-2022 ASEE Science and Technology Policy Fellow at the National Science Foundation, Alexandria, VA, USA

Abstract: High-performance devices, integrated circuits for future energy-efficient high-speed communication networks, and IoT sensors demand high-performance semiconductor devices that can be integrated into advanced systems. This talk will examine the properties sought for heterostructure devices for GHz to THz applications. Challenges faced by the key high-speed device technologies that set in motion the communication revolution of our times will be discussed, along with some of the efforts underway for fulfilling the demands of future applications. We will see how the presence of defects and carrier traps in semiconductors hinder device performance and affect efficiency and how future technology can exploit these traps.

The Evolution of Surface Radar and Naval Platform Integration

Speaker: Sara Pena Barros, Thales Nederland B.V., The Netherlands

Abstract: Naval forces are exposed to several different threats with elaborate behaviors, especially uncrewed air and surface vehicles, in a complex above-water environment. This translates into a need for superior air and surface detection, tracking, and classification performance. In a high-intensity Above Water Warfare context, the integration of all sensors provides a higher quality and faster tactical picture, giving a clear, rapid full situational awareness (air, surface) and increased defense capabilities of the whole task group. This talk will focus on the hand-in-hand evolution of surface radar with an evergrowing-in-complexity threat scenario and the challenges of naval platform integration of such (multi-) sensor systems.
Maximum Power Transfer Efficiency of MIMO-WPT System

Speaker: Qiaowei Yuan
Abstract: This lecture introduces a universal approach for calculating the power transfer efficiency (PTE) and maximum power transfer efficiency (MPTE) of a Multiple Input Multiple Output Wireless Power Transfer (MIMO-WPT) system. The method is applicable to various wireless power coupling techniques and can accommodate any number of transmitters and receivers. The approach, known as E-MIMO, utilizes the Rayleigh quotient and is based on an equivalent M+N ports S-parameters circuit network of the MIMO-WPT system. The process of computing PTE and MPTE for a MIMO-WPT system will be thoroughly explained in a step-by-step manner, accompanied by numerous practical applications, demonstrating the versatility of the approach. Additionally, the lecture will introduce an essential potential application for array beamforming.

Additive Manufacturing: Emerging Opportunities for Microwave Components

Speaker: Cristiano Tomassoni
Abstract: The Additive Manufacturing (AM) technology offers several attractive features. However, using such technologies for microwave devices is not straightforward as AM has not been specifically developed for microwave components. Furthermore, there are many AM technologies available, and it is important to understand their characteristics before selecting one. In the presentation, an overview of the different AM technologies available will be provided. An analysis of some of the most common AM technologies used for manufacturing microwave components will be conducted in more detail. Several microwave components manufactured with some of the most popular AM technologies will be conducted in more detail. Sev-
100-300 GHz Wireless Communications

Speaker: Mark Rodwell

Abstract: 100-300 GHz wireless systems can provide very high data rates per signal beam, and, given the short wavelengths, even compact arrays can contain many elements, permitting massive spatial multiplexing for further increased capacity. We will describe the underlying transistor technology, plus IC, antenna, array module, and systems design of 140 GHz massive MIMO wireless hubs and 210 GHz and 280 GHz MIMO backhaul links.

Mo2B-1: Microwave Transistor Nonlinear Modelling for Power Amplifier Designers: The Revealed Truth

Authors: Antonio Raffo, Università di Ferrara

Mo2B-2: Application of the Cardiff Model for Orthogonal LMBA Response Prediction

Authors: Mengyue Tian, Cardiff University; Jean-Baptiste Urvois, Cardiff University; Roberto Quaglia, Cardiff University; James Bell, Cardiff University; Paul Tasker, Cardiff University; Steve Cripps, Cardiff University; Jeff Powell, Skyarna Ltd.

Mo2B-3: Large-signal characterization and behavioral modelling of mm-wave GaN HEMT switchestailed for advanced power amplifier architectures

Authors: Seyed Urman Ghozati, Cardiff University; Alexander Baddeley, Cardiff University; Roberto Quaglia, Cardiff University

Mo2B-4: Electromagnetic Coupling Between Passive Circuits and Non-Uniform Transistor Operation in High-Power Microwave Packaged Devices

Authors: Handotshi Tsuji, Sumitomo Electric Industries, Ltd.; Ken Kikuchi, Sumitomo Electric Industries, Ltd.; Ayumu Honda, Sumitomo Electric Industries, Ltd.; Hiroshi Yamamoto, Sumitomo Electric Industries, Ltd.

Mo2B-5: Impact of Matching Networks on the Impedance Settling Time in High Frequency Power Amplifiers

Authors: Roberto Quaglia, Cardiff University; Steve Cripps, Cardiff University; Jeff Powell, Skyarna Ltd.
WiSNet Panel "RFID as a Sustainable Route to Digital Twins"

Organizers: Valentina Palazzi, University of Perugia
Mahmoud Wagih, University of Glasgow

Room: Crockett AB

RFID as a Sustainable Route to Digital Twins

Panelists:

- Valentina Palazzi, University of Perugia, Moderator & Organizer
- Mahmoud Wagih, University of Glasgow, Moderator & Organizer
- CJ Reddy, Altair
- Nuno Borges Carvalho, University of Aveiro
- Jasmin Grosinger, TU Graz
- Eduardo Rojas, Embri-Riddle Aeronautical University
- John McVay, Sandia National Laboratories
Monday, 22 January 2024 • Early Afternoon Sessions

RWS Session Mo3A

High-speed and Broadband Wireless Technologies

Chair: Changzhan Gu, Shanghai Jiao Tong University
Co-Chair: Michael Brown, Texas Tech University

Room: Texas A

Mo3A-1: 25.9-Gb-s 259-GHz Phased-Array CMOS Receiver Module with 28° Steering Range

Authors: Shinsuke Hara, National Institute of Information and Communications Technology; Mohamed H MuBarak, National Institute of Information and Communications Technology; Akifumi Kasamatsu, National Institute of Information and Communications Technology; Yoshiki Sugimoto, Nagoya Institute of Technology; Kuspo Sakakibara, Nagoya Institute of Technology; Kyuha Takano, Tokyo University of Science; Takeshi Yoshiida, Hiroshima University; Shunto Arakawa, Hiroshima University; Minoru Fujishima, Hiroshima University

Mo3A-2: Low-Additive Phase Noise Low-Power Static Frequency Dividers

Authors: Samin Hanifi, University of Virginia; Steven M Bowers, University of Virginia

Mo3A-3: An RoE-based Real-Time Radio Spectral Probe

Authors: Guilherme Lourenço, Universidade de Aveiro; Francisco F Serôdio, Instituto De Telecomunicaçoes; Luis F Almeida, Universidade de Aveiro; Hugo S Silva, Instituto De Telecomunicaçoes; Armando R Oliveira, Univ. de Aveiro - Inst. de Telecom.

Mo3A-4: Track, Hold, and Reset Network for Eliminating Transient Distortion in Direct Sampling Front-Ends

Authors: Daniel Vorobiev, Texas A&M University; Sakshi Vastrad, Texas A&M University; Linda Katehi, Texas A&M University

Mo3A-5: A Wideband 2.18-13.51 GHz Ultra-Low Additive Phase Noise Power Amplifier in InP 250nm HBT

Authors: Pedram Shirmohammadi, University of Virginia; Steven M Bowers, University of Virginia

PAWR Session Mo3B

Advanced Circuit Design and Topologies - 2

Chair: Peter Asbeck, University of California, San Diego
Co-Chair: Anna Piacibello, Politecnico di Torino

Room: Texas B

Mo3B-1: A Ku-band High Gain 40 W GaN HPA MMIC for Satellite Systems in a 0.25-μm GaN Technology

Authors: Taejoo Sim, Hanyang University; Seungju Lee, Hanyang University; Dongmin Lee, Hanyang University; Wonsook Choe, MMIL Laboratory Co., Ltd.; Minchul Kim, MMIL Laboratory Co., Ltd.; Sangmo Kim, RHFIC Corporation; Youngae Lee, RHFIC Corporation; Kyongil Na, Agency for Defense Development; Junghyun Kim, Hanyang University

Mo3B-2: Harmonic-Injection Doherty Power Amplifier: Benefits and Limitations

Authors: Moise Safarif Mugis, Fraunhofer Institute for Applied Solid State Physics; Christian Friesicke, Fraunhofer Institute for Applied Solid State Physics; Mohammed Ayad, United Monolithic Semiconductors; Thomas Maier, Fraunhofer Institute for Applied Solid State Physics; Ruediger Quay, Fraunhofer Institute for Applied Solid State Physics

Mo3B-3: An All-Analog Sampled-Line VSWR Sensor

Authors: Grace Gomez, University of Colorado; Devon Donahue, University of Colorado; Robert Macfarland, University of Colorado; Taylor Barton, University of Colorado

Mo3B-4: Ultra-Fast Operating Point Switching for Watt-Level 3.6 GHz Power Amplifiers

Authors: Maximilian G Becker, Technische Universität Dresden; Andreas Seidel, Technische Universität Dresden; Marco Gurnia, Technische Universität Dresden; Frank Ellinger, Technische Universität Dresden

Mo3B-5: A 22FDX® 2 Stack Power Amplifier for 5G Applications with 19dBm Psat and 49% Peak PAE

Authors: Zaid Al-Husseini, GLOBALFOUNDRIES; Paolo Valero Testa, GLOBALFOUNDRIES; Shaif Syed, GLOBALFOUNDRIES; Mayuri Padmarakwar, GLOBALFOUNDRIES; Chris Boyer, GLOBALFOUNDRIES; Tianbing Chen, GLOBALFOUNDRIES

SiRF Session Mo3C

Millimeter-Wave Signal Generation

Chair: Taiyun Chi, Rice University
Co-Chair: Austin Chen, Peraso, Inc.

Room: Texas C

Mo3C-1: A 4.5 dBm SiGe Doubler-Amplifier Chain Covering the Entire D-Band

Authors: Matthias Moeck, Karlsruhe Institute of Technology; Ibrahim Kagan Akyosay, Karlsruhe Institute of Technology; Cagri Ulusoy, Karlsruhe Institute of Technology

Mo3C-2: A SiGe-Based Quadrature D-Band Up-Converter with High Output Power

Authors: Ibrahim Kagan Akyosay, Karlsruhe Institute of Technology; Matthias Moeck, Karlsruhe Institute of Technology; Cagri Ulusoy, Karlsruhe Institute of Technology

Mo3C-3: A 300 GHz ×9 Multiplier Chain With 9.6 dBm Output Power in SiGe Technology

Authors: Arjith Chandra Prabhu, University of Wuppertal; Anas Gzyry, University of Wuppertal; Philipp Hilger, University of Wuppertal; Thomas Buecker, University of Wuppertal; Holger Riecker, IHP Microelectronics; Ulrich Pfeiffer, University of Wuppertal

Mo3C-4: 230 GHz Signal Generator for High-Bandwidth Data Links in 130 nm SiGe BiCMOS

Authors: Christian Hoyert, Technische Universität Dresden; Luca Steinweg, Technische Universität Dresden; Florian Proze, Technische Universität Dresden; Franz Alwin Dürrwald, Technische Universität Dresden; Tilo Meister, Technische Universität Dresden; Frank Ellinger, Technische Universität Dresden
The RWW Student Paper Contest

The purpose of the Student Paper Contest is to reward students for exceptional work and consider group projects as well as individual projects. The RWW Student Paper Contest provides students with the opportunity to share their work and discuss their results with experts from industry and academia. It is open to all students attending the RWW and presenting a paper at one of the topical conferences (RWS, PAWR, WiSNet, SiRF, and SHaRC). Starting from 2017 the Steering Committee established a new format of the Student Paper Contest, which is now a single event for the whole RWW.

The following rules apply for participating at the Student Paper Contest:

- First author must be a student (a full time or part time). A letter is required from major advisor (Professor) stating that the first author is a registered full-time student or part-time student and has done a substantial portion of the work. Failure to provide this letter will result in disqualification.

- Number of authors on the paper: No limit, including outside authors. Outside authors are defined as co-authors from industry or from other institutions (government labs, other universities, etc.). The outside authors are included to encourage group-project submissions. The review committee will consider the number of authors vs. the level of work presented in the paper in order not to penalize the individual project submissions.

- All students wishing to participate in the contest are required to follow the regular Symposium submission process for papers including registration. Please check the checkbox during the submission process for being considered in the contest.

- Student Paper Contest submissions are first evaluated by the Technical Program Committee (TPC), along with all other manuscript submissions, and receive no special consideration when being considered for acceptance to the symposium. Those papers that are accepted for oral presentation, identified as Student Paper submissions, and that meet the criteria (Relevance, Novelty, Quality, and Content) become eligible for the Student Paper Contest. The TPC and the Student Paper Contest Chairs will separately evaluate these papers again to select Student Paper Finalists.

- Each Student Paper Finalist is required to prepare a short elevator pitch and a poster. Judges from all topical conferences will select the first and second place winners among the Student Paper Finalists based on the quality of the final paper, the poster presentation, and the oral presentation. The winners will be announced at the Plenary Session on Tuesday. Like last year, the first-place winner is invited to write a paper for the IEEE MTT-S Microwave Magazine.

Ken Kolodziej, MIT Lincoln Laboratory
Ifana Mahbub, UT Dallas
RWW Student Paper Contest Chairs

Process & Rules of the Student Paper Contest

Each Student Paper Finalist is required to prepare a short elevator pitch and a poster.

The elevator pitches take place on Monday 22 January from 1:30PM to 3:10PM in room Crockett AB.

The poster presentations take place on Monday 22 January from 3:40PM to 5:20PM during the coffee break in room Texas DF.

For the elevator pitches finalists will be in the role of the entrepreneur and present their idea to potential investors (the judges). There will only be a flip chart for supporting the presentation. Maximum two persons per paper can bring whatever they can carry for a presentation of four minutes.

The winners will be announced in the Plenary Session on Tuesday 23rd January.

Finalists 2024

- **Low Phase Noise 104 GHz Oscillator Using Self-Aligned On-Chip Voltage-Tunable Spherical Dielectric Resonator in 130-nm SiGe BiCMOS**, Yu Zhu, Technische Universität Dresden

- **Investigating Feeding Techniques for High power and High efficiency E band Power Amplifiers**, Bharath Kumar Cimbil, Fraunhofer Institute for Applied Solid State Physi

- **A Planar Monopulse Comparator Network Design from Port-Transformation Rat-Race Coupler**, Hanxiang Zhang, Florida State University

- **A 4.5 dBm SiGe Doubler-Amplifier Chain Covering the Entire D-Band**, Matthias Moeck, Karlsruhe Institute of Technology

- **Distributed Radar Network with Polymer Microwave Fiber (PMF) Based Syn-chronization**, Andawattage Samarasekera, Johannes Kepler University Linz

- **A Modular 61 GHz Vital Sign Sensing Radar System for Long-term Clinical Studies**, Marvin Wenzel, Hamburg University of Technology

- **Compact Multilayer AFSIW Diplexer**, Maxime Le Gall, Exens Solutions

- **Investigation of a Simple and Versatile Concept for OFDM Radar Target Simul-ator Enhancement**, Christoph Birkenhauer, Friedrich-Alexander-Universität Erlangen-Nürnberg

- **High-Performance Compact Diplexer Based on the Alternative Low-Cost AF-SIW Technology**, Maxime Le Gall, Exens Solutions

- **DDS-based Multiphase Local Oscillator Generator for Fast-Beam-Switching**, Chung-Tse Michael Wu, Rutgers Univ.

- **Regenerative Oscillator-Based Pulsed Radar**, Chang-Yeh Chang, National Central University

- **A 23–30 GHz Low-phase-noise 5-Bit Voltage-Controlled Oscillator in 90-nm CMOS Process**, Hong-Yeh Chang, National Central University

- **A 34 GHz CMOS VCO with Transformer Tail-Node Filter and TSPC Frequency Divider in 22 nm FDSOI**, Andre Engelmann, Friedrich-Alexander-Universität Erlangen-Nürnberg

- **Concurrent Vibration and Location De-tection Using W-band On-chip Super-Regenerative Oscillator-Based Pulsed Radar**, Chung-Tse Michael Wu, Rutgers Univ.

- **Phased-Array Antennas**, Shuichi Inaguma, Ritsumeikan University

- **High Accuracy DPD Approach for Hybrid Beamformer using Novel Train-ing Symbol Mapping**, Rahul Mushini, Maynooth University

- **A 4.5 dBm SiGe Doubler-Amplifier Chain Covering the Entire D-Band**, Matthias Moeck, Karlsruhe Institute of Technology
Entrepreneurial Mindset: Cultivate the entrepreneurial mindset required to navigate the challenges of entrepreneurship, including risk-taking, adaptability, and resilience.

Market Validation: Discover the importance of market validation and how to engage with potential customers and stakeholders to refine your offerings.

Developing a Business Model: Learn how to create a solid business model that aligns with your research, effectively translating your ideas into a commercially viable product or service.

Market Validation: Discover the importance of market validation and how to engage with potential customers and stakeholders to refine your offerings.

Funding and Resources: Explore various funding options and support resources available to early-stage researchers, including the opportunities offered by the Southwest Hub I-Corps grant.

Entrepreneurial Mindset: Cultivate the entrepreneurial mindset required to navigate the challenges of entrepreneurship, including risk-taking, adaptability, and resilience.

During this interactive workshop, you will gain invaluable insights into:

- Identifying Market Opportunities: Understand how to identify and assess potential markets for your technology, ensuring your innovations meet real-world demands and needs.
- Developing a Business Model: Learn how to create a solid business model that aligns with your research, effectively translating your ideas into a commercially viable product or service.
- Market Validation: Discover the importance of market validation and how to engage with potential customers and stakeholders to refine your offerings.
- Funding and Resources: Explore various funding options and support resources available to early-stage researchers, including the opportunities offered by the Southwest Hub I-Corps grant.
- Entrepreneurial Mindset: Cultivate the entrepreneurial mindset required to navigate the challenges of entrepreneurship, including risk-taking, adaptability, and resilience.
Joint PAWR / ARFTG Panel "Exploring the Potential of 6G: Building upon 5G's Learnings"

Organizer: Vittorio Camarchia, Politecnico di Torino

Room: Texas A

Exploring the Potential of 6G: Building upon 5G’s Learnings

Abstract:
Get ready for a vivid discussion on the future of wireless technology. Our panel of industry experts will delve into the possibilities of 6G, leveraging the lessons learned from the era of 5G. Don’t miss this exciting opportunity to gain valuable insights into the next generation of wireless communication.

Meet our expert panelists featuring experts from HRL, Fraunhofer, Virginia diodes, Keysight, and NI.

Panelists:

- Jeong Moon, HRL
- Gerhard Schoenthal, Virginia Diodes
- Nuno Borges Carvalho, IT Aveiro
- Mark Pierpoint, Keysight Technology
- Fabian Thome, Fraunhofer Research Institute
- Markus Dasilva, National Instruments
- Alessandro Fonte, Siae Microelectronics
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>RWS Session Tu1A</td>
<td>Antenna and Beamforming Technologies</td>
<td>Chair: Vaclav Valenta, European Space Agency
Co-Chair: Ricardo Figueiredo, University of Aveiro</td>
<td>Texas A</td>
</tr>
<tr>
<td>8:20</td>
<td>Tu1A-1</td>
<td>Beamforming-based Spatial Pre-coding with Channel Estimation for Massive MIMO-OFDM System</td>
<td>Authors: Chen-Hao Chiu, National Taiwan University; Ju-Hong Lee, National Taiwan University</td>
<td></td>
</tr>
<tr>
<td>8:40</td>
<td>Tu1A-2</td>
<td>A Pencil Beam Parabolic Reflector Antenna Using LSE-NRD Guide at 140 GHz</td>
<td>Authors: Daiya Miyamoto, National Institute of Technology, Kure College; Futoshi Kuroki, National Institute of Technology, Kure College</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Tu1A-3</td>
<td>Spatial Processing with High-Fidelity Antenna Models and Quantized Analog Weights</td>
<td>Authors: John Spitzmiller, Parsons</td>
<td></td>
</tr>
<tr>
<td>9:20</td>
<td>Tu1A-4</td>
<td>A Compact and Highly Efficient Circularly Polarized UWB Rectenna for Wireless Power Transfer Application</td>
<td>Authors: Nabanita Saha, University of Texas at Dallas; Sunanda Roy, The University of Texas at Dallas; Ifana Mahbub, University of Texas at Dallas</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>SIRF Session Tu1B</td>
<td>Amplifier Design</td>
<td>Chair: Mehmet Kaynak, Texas Instruments
Co-Chair: Robert Schmid, Johns Hopkins Applied Physics Laboratory</td>
<td>Texas B</td>
</tr>
<tr>
<td>8:20</td>
<td>Tu1B-1</td>
<td>CMOS LNA and VGA for 5G NR Using Gain-Linearity-Boosting and Body Floating Techniques</td>
<td>Authors: Jin-Fa Chang, National Changhua University of Education; Yo-Sheng Lin, National Chi Nan University</td>
<td></td>
</tr>
<tr>
<td>8:40</td>
<td>Tu1B-2</td>
<td>Parametric-Oscillation-Free Efficient SiGe:C Power Amplifier Design for Ku-Ka-Band SATCOM</td>
<td>Authors: Tsung-Ching Tsai, Karlsruhe Institute of Technology; Vaclav Valenta, European Space Agency; Cagri Ulusoy, Karlsruhe Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Tu1B-3</td>
<td>A 94 GHz Bandwidth Transimpedance Amplifier in 55nm SiGe BiCMOS for High Speed Optical Receivers</td>
<td>Authors: Lachlan Cuskelly, University of California, Los Angeles; Christopher Falt, Ciena Corp.; Peter Schvan, Ciena Corp.</td>
<td></td>
</tr>
<tr>
<td>9:20</td>
<td>Tu1B-4</td>
<td>A 200 - 325 GHz Gain-Boosted J-Band Low-Noise Amplifier in a 130 nm SiGe BiCMOS Technology</td>
<td>Authors: Manuel Koch, Friedrich-Alexander-Universität Erlangen-Nürnberg; Andre Engelmann, Friedrich-Alexander-Universität Erlangen-Nürnberg; Robert Weigel, Friedrich-Alexander-Universität Erlangen-Nürnberg</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Room</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>SIRF Session Tu1C</td>
<td>Radar and Sensor Circuits and Architectures</td>
<td>Chair: Saeed Zeinolabedinzadeh, Arizona State University
Co-Chair: Davi Rodrigues, University of Texas at El Paso</td>
<td>Texas C</td>
</tr>
<tr>
<td>8:20</td>
<td>Tu1C-1</td>
<td>Advances in mmWave Radar Architectures</td>
<td>Authors: Brian Ginsburg, Texas Instruments</td>
<td></td>
</tr>
<tr>
<td>8:40</td>
<td>Tu1C-2</td>
<td>Analysis of a SiGe BICMOS Detector for a Broadband mmW-integrated EPR Spectrometer</td>
<td>Authors: Selina Eckel, Karlsruhe Institute of Technology; Ahmet Cagri Ulusoy, Karlsruhe Institute of Technology</td>
<td></td>
</tr>
<tr>
<td>9:00</td>
<td>Tu1C-3</td>
<td>27 Gb-s PRBS Generator with In-Operation Programmable Taps for PMCW Radar</td>
<td>Authors: Florian Probst, Friedrich-Alexander-Universität Erlangen-Nürnberg; Andre Engelmann, Friedrich-Alexander-Universität Erlangen-Nürnberg; Robert Weigel, Friedrich-Alexander-Universität Erlangen-Nürnberg</td>
<td></td>
</tr>
</tbody>
</table>
The Future of Heterogeneous Integration for mmWave Systems: Challenges and Opportunities

Speaker: Madhavan Swaminathan, The Pennsylvania State University, USA

Madhavan Swaminathan is the Department Head of Electrical Engineering and is the William E. Leonhard Endowed Chair at Penn State University. He also serves as the Director for the Center for Heterogeneous Integration of Micro Electronic Systems (CHIMES), an SRC JUMP 2.0 Center. Prior to joining Penn State University, he was the John Pippin Chair in Microsystems Packaging & Electromagnetics in the School of Electrical and Computer Engineering (ECE), Professor in ECE with a joint appointment in the School of Materials Science and Engineering (MSE), and Director of the 3D Systems Packaging Research Center (PRC), Georgia Tech (GT). Prior to GT, he was with IBM working on packaging for supercomputers. He received his MS and PhD degrees in Electrical Engineering from Syracuse University in 1989 and 1991, respectively.

Abstract:

Emerging electronic systems require the dense integration of many chiplets in either 2D or 3D form. The metrics for these systems will be dictated by power, performance, form factor, cost, and reliability. The complexity of these systems is expected to be large given the integration of sensing, wireless, computing, and other functionality on a single packaging platform that combines electronics and photonics together. Such systems pose immense integration challenges but also provide opportunities for innovation on several fronts that include architecture, design, thermal, materials, embedded intelligence, and many more? This presentation will provide a discussion of the State of the Art and opportunities for the future.

Redefining ICs Metrics for OTA Characterization

Speaker: Anouk Hubrechsen, ANTENNEX B.V.

Anouk Hubrechsen received the B.Sc. and M.Sc. degrees in Electrical Engineering from the Eindhoven University of Technology, Eindhoven, The Netherlands, in 2017 and 2019, respectively, where she finished her Ph.D. in 2023 on reverberation-chamber measurements of mmWave antennas. She was a Guest Researcher with the National Institute of Standards and Technology at Boulder, Boulder, CO, USA, in 2018 and 2019. There she was involved in reverberation-chamber metrology for Internet-of-Things applications. She is co-founder and CEO of ANTENNEX B.V., a company that develops instrumentation for measuring integrated antenna systems, based on reverberation-chamber technology. Anouk received the Regional and District Zonta Women in Technology Awards in 2019.

Abstract:

With higher frequencies, integration of antennas and RF electronics means that many measurements now need to be performed over the air. In this talk, we explain the challenges of testing RF electronics in phased-array and antenna-on-chip configurations. They require new types of testing methods. We detail the newest over-the-air measurement techniques for metrics such as noise figure, out-of-band emissions, radiated power spectrum, and field distribution in advanced, highly-integrated devices.
Interactive Forum IF1 - Room: Texas D-F

IF1-1: A Compact 2.45-5.5-GHz Dual-Band LNA Design Using Bridged-T Coils

Authors: Jing-Xuan Chou, National Central University; Yo-Shen Lin, National Central University

IF1-2: Single-Voltage-Supply pHEMT-mHEMT 2.4 and 5.8 GHz LNAs Using Power Constrained Design

Authors: Chinchun Meng, National Yang Ming Chiao Tung University; Guo-Wei Huang, National Applied Research Institute

IF1-3: Scalable Multi-tap RF Canceller with Arduino Control for STAR Systems

Authors: Pierre-Francois W Wolfe, MIT Lincoln Laboratory; Kenneth E Koizolde, MIT Lincoln Laboratory

IF1-4: Robust Estimation for Digital Predistortion with Non-ideal Equalization

Authors: Richard N Braithwaite, Keysight Technologies

IF1-5: Broadband GaN Power Amplifier MMIC with Nonuniform Transmission Line Output Matching Network

Authors: Paul A Flaten, University of Colorado; Zoya Popovic, University of Colorado

IF1-6: Integrated GaN Power Detector for High Power Millimeter-Wave Applications

Authors: Thomas Utschig, Institute of Robust Power Semiconductor Systems; Benjamin Schoch, Institute of Robust Power Semiconductor Systems; Sandrine Wagner, Fraunhofer Institute for Applied Solid State Physics; Dirk Schwantuschke, Fraunhofer Institute for Applied Solid State Physics; Ingmar Kallfass, Institute of Robust Power Semiconductor Systems

IF1-7: An X-band Spatial Power Combining Using Rectangular Waveguide with Dielectric Lens

Authors: Takuma Kinoshita, NIT, Kure college; Kaiseh Houssein, Ampleon; Alexis Court; Ampleon; Stephan Maroldt, Ampleon

IF1-8: An Ultra-wideband Off-axis Reflector Lens

Authors: Mingyan Zhong, University of Glasgow; Yunan Jiang, University of Glasgow; Yufei Ma, University of Glasgow; Chong Li, University of Glasgow

IF1-9: A Linear Simulation Technique for a Power Traveling-Wave Amplifier

Authors: Waleed Joudeh, Armon Communications Inc.; Amin Ezzeeddine, AMCOM Communications, Inc

IF1-10: Study of AM-PM Deviation on Power Amplifier Linearization Performances for 5G Applications

Authors: Christophe Quindroit, Ampleon; Kaisheh Houssein, Ampleon; Alexis Court; Ampleon; Stephan Maroldt, Ampleon

IF1-11: A 3.6GHz Highly Efficient Dual-Driver Doherty Power Amplifier

Authors: Ioannis Peppas, Graz University of Technology; Marco Pitton, Infineon Technologies Austria AG; Mustazar Iqbal, Infineon Technologies; Peter Singfret, Infineon Technologies AG; Hadi T.M. Titi, Infineon Technologies Nijmegen BV; Martin Mathias, Infineon Technologies Austria AG

IF1-12: Cost-Effective Allan Deviation Measurement in SDRs Using Integrated ADC

Authors: Alastair L Wiegelmann, Flinders University; Samuel Drake, Flinders University; Saeed Rehman, Flinders University; Shengjian Chen, Flinders University

IF1-13: Multi-Antenna Array for All Space Communications

Authors: Pavlo Molchanov, AMPAC Science

IF1-14: Energy-Efficient D-Band Power Amplifier Linearization Adopting Back-Gate Feedforward Technique in 22nm FD-SOI

Authors: Heila Ordouei, Technische Universität Berlin; Friedel Gerfers, Technische Universität Berlin

IF1-15: Impact on Beam-Forming Processes in the Near Field for 5G Ultra-Wideband Waveform

Authors: Maryna Nesterova, APREL Inc.; Stuart Nicol, APREL; Yuliya Nesterova, Carleton University

IF1-16: High Gain Metamaterial Superstrate Loaded Antenna For S band Communication

Authors: Prutha P Kulkarni, Vishwakarma Institute of Information Technology; Vivek S Deshpande, Vishwakarma Institute of Information Technology
IF1-18: High Gain Metamaterial Superstrate Loaded Antenna For S band Communication
Authors: Prutha P Kulkarni, Vishwakarma Institute of Information Technology; Vivek S Deshpande, Vishwakarma Institute of Information Technology

IF1-19: Software Configurable Multi-mode Radar Sensor System for Range Tracking and Life Sensing
Authors: John T Crainer, Texas Tech University; Changhui Li, Texas Tech University

IF1-20: ISAR Imaging of Drones Based on Backprojection Algorithm Using Millimeter-Wave Fast Chirp Modulation MIMO Radar
Authors: Kenshi Ogawa, National Defense Academy of Japan; Dovchin Tsagagbayar, National Defense Academy of Japan; Ryohei Nakamura, National Defense Academy of Japan

IF1-21: Wireless Network Deployment Survey
Authors: Arash Ahmadi, École de Technologie Supérieure de Montreal; Zahra Sepehr, École de Technologie Supérieure de Montreal; Maroane Indja, École de Technologie Supérieure de Montreal; Vladan Jexremovic, iBwave Solution Inc.; Ali Jemmali, iBwave Solutions Inc.; Cédric Bélanger, iBwave Solutions Inc.; Sylvain G Cloutier, École de Technologie Supérieure de Montreal; Ali Motamedi, École de Technologie Supérieure de Montreal

IF1-22: A Compact 6-12 GHz MMIC Power Amplifier
Authors: Muhammad Y Mahsud, University of Colorado; Pratvamanesh Pednekar, University of Colorado Boulder - ECEE; Taylor Barton, University of Colorado

IF1-23: A Comprehensive Approach to Extracting Coupling Matrix From Filtenna Measurements
Authors: Sara Javadi, Graz University of Technology; Behrouz Rezaee, Graz University of Technology; Manfred Stadler, Qualcomm Europe, Inc.; Michael Leitner, Qualcomm Europe, Inc.; Wolfgang Bösch, Graz University of Technology

IF1-24: A Wideband Patch Antenna Array with Improved Isolation for Integrated Sensing and Communication
Authors: Lina Ma, Shanghai Jiao Tong University; Changzhan Gu, Shanghai Jiao Tong University; Junfa Mao, Shanghai Jiao Tong University

IF1-25: Design of a Six-stage W-band Low-Noise Amplifier Using a 90-nm CMOS Technology
Authors: Yu-Chia Su, National Central University; Rou-Yin Huang, National Central University; Hong-Yeh Chang, National Central University

IF1-26: Compact Dual-Band Negative Group Delay Circuit
Authors: Nathan B Gurgel, Federal University of Campina Grande; Glaucio Fontgalland, Federal University of Campina Grande; Isaac Barros, Federal Rural University of Semiarid; Blaise Ravelo, Nanjing University of Science and Technology

IF1-27: Low power gesture sensing system based on target range using spiking neural networks for portable devices
Authors: Muhammad Arsalan, Technische Universität Braunschweig; Vadim Issakov, Technische Universität Braunschweig

IF1-28: Over-the-Air LoS Propagation Characteristics of Various Indoor Materials at 28 GHz
Authors: Mohammad Alavirad, Dell Technologies; Tiejinder Singh, Dell Technologies; Moris Repeta, Dell Technologies

IF1-29: Class S Power Amplifier System for Radio Applications in the HF Band
Authors: Alexander Ruderer, University of Innsbruck; Alex Putzer, University of Innsbruck

IF1-30: A 1.28 mW K-Band Modified Gilbert-Cell Mixer Design in 22nm FD-SOI CMOS
Authors: Adilet Dossanov, Technische Universität Braunschweig; Vadim Issakov, Technische Universität Braunschweig
Bringing EDA-Tool Schematics into LaTeX - An Open-Source Solution

Presenter:
Christof Pfannenmüller

Affiliation:
Lehrstuhl für Technische Elektronik, Team Radio & Biomedical Applications

Abstract:
Current EDA tools like PathWave Advanced Design System or Cadence Virtuoso support various formats for data interchange and documentation exports. We propose an open-source solution for directly transferring schematic data to the node-based drawing environment TikZ and its extension CircuiTikZ for electrical schematic drawings. Schematics are exported as XML-based file structures via ADS Board Link (ABL). Using this input, the proposed tool can recalculate components and their placements and convert them to TikZ-based source code. With these, the schematic can be used in LaTeX documents.

Demo Overview:
This demo will contain a live view of several Keysight ADS schematics and their conversion with the proposed open-source JavaScript-based tool. Afterward, the results are shown in a LaTeX document for comparison. A computer with the necessary installed software will be provided. No additional equipment will be required for the demo.

Nature-Inspired All-Space Multi-Antenna Array Architecture

Presenter:
Dr. Pavlo Molchanov

Affiliation:
IPD Scientific LLC

Abstract:
The nature-inspired all-space multi-antenna array architecture combines various techniques to achieve wide-area multi-orbit observation, fast simultaneous signal processing, high directional accuracy, enhanced reliability, and communication quality. The key elements and features of the architecture: Holographic wide area of observation with staring antenna array; Monopulse method of fast simultaneous signals processing; Direct Digitizing Signals on Multi-Axis Overlap Directional Antennas; Integration of Antennas with Signal Conditioning Circuits and SDR; Distributed Placement for System Protection; Transformation and Processing in Multiple Domains. Moreover, the application of wide numerical aperture overlap antennas allows the detection and recognition of different objects in high-scattering mediums by measurement of the Fresnel diffraction patterns and angular spectrum of scattered and diffraction components. Fourier transform and digital multi-domain digitizing can provide reliable recognition of objects by spectrum signatures and separation of transferring medium and objects.

Demo Overview:
The demonstration setup will consist of a low-power transmitter module and a receiving module connected to two separate directional antennas by flexible coaxial cables. The receiving module can be connected to a phase detector or Software Determined Radion (SDR). This setup allows for a demonstration of key features of the array architecture, as well as the recognition of different objects using their spectrum signatures. Remote detection and recognition of concealed objects will be also demonstrated.
RWS Session Tu3A

Bio-Medical Applications

Chair: Robert Caverly, Villanova University
Co-Chair: Ifana Mahbub, University of Texas at Dallas

Room: Texas A

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40</td>
<td>Tu3A-1: Concurrent Vibration and Location Detection Using W-band On-chip Super-RegenerativeOscillator-Based Pulsed Radar</td>
<td>Authors: Donglin Gao, Rutgers University; Shuping Li, Rutgers University; Minning Zhu, Rutgers University; Chung-Tse Michael Wu, Rutgers University</td>
</tr>
<tr>
<td></td>
<td>Tu3A-2: A Multi-layer Coil Magnetic Stimulation Device for autonomous function regulation</td>
<td>Authors: Po-Lei Lee, National Central University; Kuo-Kai Shyu, National Central University</td>
</tr>
<tr>
<td>17:20</td>
<td>Tu3A-3: Respiratory Dynamics of Thoracic and Abdominal Motion in Doppler Radar Measurements</td>
<td>Authors: Jannatun Noor Sameera, University of Hawaii at Manoa; Alexander Lee, University of Hawaii at Manoa; Victor Lubecke, University of Hawaii Manoa; Olga Borić-Lubecke, University of Hawaii at Manoa</td>
</tr>
<tr>
<td></td>
<td>Tu3A-4: Enhancing Heart Failure Monitoring: Biomedical Radar-Based Detection of Cheyne-Stokes Respiration</td>
<td>Authors: Li Wen, Shanghai Jiao Tong University; Zhi Zhang, Shanghai General Hospital; Jinliang Wang, Shanghai General Hospital; Jiaqi Liu, Shanghai General Hospital; Shuqin Dong, Shanghai Jiao Tong University; Changtian Gu, Shanghai Jiao Tong University; Junfa Mao, Shanghai Jiao Tong University</td>
</tr>
</tbody>
</table>

SiRF Session Tu3C

Voltage-Controlled Oscillators

Chair: Austin Chen, Peraos, Inc.
Co-Chair: Chung-Tse Wu, Rutgers University

Room: Texas C

<table>
<thead>
<tr>
<th>Time</th>
<th>Session Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40</td>
<td>Tu3C-1: A 23-30 GHz Low-phase-noise 5-Bit Voltage-Controlled Oscillator in 90-nm CMOS Process</td>
<td>Authors: Po-Yuan Chen, National Central University; Jun-Liang Chen, National Central University; Hong-Yeh Chang, National Central University</td>
</tr>
<tr>
<td></td>
<td>Tu3C-2: Low Phase Noise 104 GHz Oscillator Using Self-Aligned On-Chip Voltage-Tunable Spherical Dielectric Resonator in 130-nm SiGe BiCMOS</td>
<td>Authors: Yu Zhu, Technische Universitaet Dresden; Georg Sterzl, University of Stuttgart; Jan Hesselbarth, University of Stuttgart; Tilo Meister, Technische Universitaet Dresden; Frank Ellinger, Technische Universitaet Dresden</td>
</tr>
<tr>
<td>17:20</td>
<td>Tu3C-3: A 34 GHz CMOS VCO with Transformer Tail-NodeFilter and TSPC Frequency Divider in 22 nm FDSOI</td>
<td>Authors: Andre Engelmann, Friedrich-Alexander-Universität Erlangen-Nürnberg; Florian Probst, Friedrich-Alexander-Universität Erlangen-Nürnberg; Philipp Hettler, Friedrich-Alexander-Universität Erlangen-Nürnberg; Robert Weigel, Friedrich-Alexander-Universität Erlangen-Nürnberg</td>
</tr>
<tr>
<td></td>
<td>Tu3C-4: D-Band VCO with Uniformly Low Phase Noise versus Frequency and Temperature</td>
<td>Authors: Isabel Kraus, Ruhr University Bochum; Herbert Knapp, Infineon Technologies AG; Nils Pohli, Ruhr University Bochum</td>
</tr>
<tr>
<td></td>
<td>Tu3C-5: Voltage-Controlled-Oscillator Using 8-shaped Transformer-coupled Transmission Line</td>
<td>Authors: Sheng-Lyang Jang, National Taiwan University of Science and Technology; Yi-Ping Hsieh, National Taiwan University of Science and Technology</td>
</tr>
</tbody>
</table>
MTT-S Space Night

As part of the SHaRC and RWW tradition, we like to invite you for the MTT-S Space Night. Join us for an exciting interactive panel discussion with experts talking about recent developments and technology trends for satellite communications, ground station equipment and services, and enjoy complementary light snacks and drinks.

Image credit: SHUTTERSTOCK.COM/Boris Rabtsevich
RWS Session We1A

Wireless Digital Signal Processing and Artificial Intelligence

Chair: Ken Kolodziej, Massachusetts Institute of Technology
Co-Chair: Markus Gardill, Brandenburg University of Technology

Room: Texas A

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>We1A-1</td>
<td>BeamCIM: A Compute-In-Memory based Broadband Beamforming Accelerator using Linear Embedding</td>
<td>Nael Mizanur Rahman, Georgia Institute of Technology; Sudarshan Sharma, Georgia Institute of Technology; Wei Chun Wang, Georgia Institute of Technology; Justin Romberg, Georgia Institute of Technology; Saibal Mukhopadhyay, Georgia Institute of Technology</td>
</tr>
<tr>
<td>8:40</td>
<td>We1A-2</td>
<td>Active Vector Modulator Design for Self-Interference Cancellation in STAR Systems</td>
<td>Marcus W Wolff, Massachusetts Institute of Technology; Kenneth E Kolodziej, MIT Lincoln Laboratory; Kuchul Jung, Georgia Institute of Technology; Saibal Mukhopadhyay, Georgia Institute of Technology</td>
</tr>
<tr>
<td>9:00</td>
<td>We1A-3</td>
<td>Modulation Recognition with Untrained Deep Neural Network for IoT and Mobile Applications</td>
<td>Jongseok Woo, Georgia Institute of Technology; Kuchul Jung, Georgia Institute of Technology; Saibal Mukhopadhyay, Georgia Institute of Technology</td>
</tr>
<tr>
<td>9:40</td>
<td>We1A-4</td>
<td>Predistortion of Charge Trapping Memory Effects in GaN based RF Power Amplifiers with Artificial Neural Networks</td>
<td>Patrick Jueschke, Nokia; Georg Fischer, Friedrich-Alexander-Universität Erlangen-Nürnberg</td>
</tr>
<tr>
<td>9:40</td>
<td>We1A-5</td>
<td>Transfer Learning Optimized PA Behavioral Modeling over 2D Operation States</td>
<td>Jose M Domingues, University of Aveiro; Hugues S Silva, Universidade de Aveiro; Nuno Carvalho, Instituto De Telecomunicacoes; Arnaldo R Oliveira, Univ. de Aveiro - Inst. de Telecom.</td>
</tr>
</tbody>
</table>

WiSNet Session We1B

Wireless Sensing and Localization Concepts

Chair: Paolo Mezzanotte, University of Perugia
Co-Chair: Valentina Palazzi, University of Perugia

Room: Texas B

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>We1B-1</td>
<td>Distributed Radar Network with Polymer Microwave Fiber (PMF) Based Synchronization</td>
<td>A Chaminda J Samarasekera, Johannes Kepler University Linz; Senpio Lopez Fernandez, Johannes Kepler University Linz; Reinhard Feger, Johannes Kepler University Linz; Richard Hüttner, Johannes Kepler University Linz; Frank Gusson, ZF Friedrichshafen AG; Siegfried Kranzer, Fineon Technologies AG; Andreas Stelzer, Johannes Kepler University Linz</td>
</tr>
<tr>
<td>9:00</td>
<td>We1B-2</td>
<td>A Three-Dimensional Localization System Based on Magnetic Fields and Induction</td>
<td>Lukas Messner, University of Innsbruck; Thomas Ussinmueller, University of Innsbruck</td>
</tr>
<tr>
<td>9:40</td>
<td>We1B-3</td>
<td>Secure Occupancy Sensing with Passive Radar for Spectrally Congested Spaces</td>
<td>Rachel Ma, Texas Tech University; Aaron B Carman, Texas Tech University; Changhui Li, Texas Tech University</td>
</tr>
<tr>
<td>9:40</td>
<td>We1B-4</td>
<td>A Digital Beamforming Approach for Indoor Passive Sensing</td>
<td>Aaron B Carman, Texas Tech University; Changhui Li, Texas Tech University</td>
</tr>
<tr>
<td>9:40</td>
<td>We1B-5</td>
<td>Wind Turbines Structural Health Monitoring Using a FMCW Radar Mounted on a Drone</td>
<td>Victor G Rizzi Varela, Texas Tech University; Changhui Li, Texas Tech University</td>
</tr>
</tbody>
</table>

SHARC Session We1C

Microwave Subsystems and Antennas for Space

Chair: Jan Budroweit, DLR Group
Co-Chair: Charlie Jackson, Earthlink

Room: Texas C

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>We1C-1</td>
<td>High-Performance Compact Diplexer Based on the Alternative Low-Cost AFSIW Technology</td>
<td>Maxime Le Gall, Exens Solutions; Anthony Ghioitti, Bordeaux INP; Issam Marah, Exens Solutions</td>
</tr>
<tr>
<td>9:00</td>
<td>We1C-2</td>
<td>Demonstration of GaN HEMT MMIC High-Power Amplifier for Lunar Proximity Communications</td>
<td>Rainee N Simons, NASA Glenn Research Center; Marie T Piascecki, NASA Glenn Research Center; Joseph A Downey, NASA Glenn Research Center; Bryan L Schoenholtz, NASA Glenn Research Center</td>
</tr>
<tr>
<td>9:40</td>
<td>We1C-3</td>
<td>Mechanical Tuning of an Offset-fed Reflector Antenna</td>
<td>Taehak Lee, Yuhang University; Sang-Gyu Lee, Korea Aerospace Research Institute; Sang-Bum Ryu, Korea Aerospace Research Institute</td>
</tr>
<tr>
<td>9:40</td>
<td>We1C-4</td>
<td>Design and Characterization of a Multi-Channel ADS-B Antenna for Small Satellites</td>
<td>Jan Budroweit, DLR; Felix Eichstaedt, German Aerospace Center; Ferdinand Stehle, DLR e.V.</td>
</tr>
<tr>
<td>9:40</td>
<td>We1C-5</td>
<td>Microlens Coupler from Integrated Photonic Circuit to Fiber Design for Space Application</td>
<td>Chengtao Xu, Embry-Riddle Aeronautical University, Daytona Beach; Jayaprakash B Shivakumar, Embry-Riddle Aeronautical University, Daytona Beach; Eduardo Rojas, Embry-Riddle Aeronautical University</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
<td>Chair(s)</td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>---------</td>
<td>----------</td>
</tr>
<tr>
<td>We2A-1</td>
<td>A Planar Monopulse Comparator Network Design from Port-Transformation Rat-Race Coupler</td>
<td>Hanxiang Zhang, Florida State University; Povei Liu, Florida State University; Jonathan Casamayor, Florida State University; Speedi Zollaghay Pour, Florida A&M University; Mitch Praisir, Florida State University; Bayaner Arigong, Florida State University.</td>
<td>Rashaunda Henderson, University of Texas at Dallas</td>
</tr>
<tr>
<td>We2A-2</td>
<td>Compact Multilayer AFSIW Diplexer</td>
<td>Maxime Le Gall, Exens Solutions; Anthony Ghiotto, Bordeaux INP; Issam Marah, Exens Solutions.</td>
<td>Bayaner Arigong, Florida A&M University</td>
</tr>
<tr>
<td>We2A-3</td>
<td>Methodology to Accurately Replicate a Non-Planar Thin-Film Microstrip BEOL in 3D EM Simulation</td>
<td>Dominik Wrana, University of Stuttgart; Christopher M Goetsch, Keysight Technologies; Benjamin Schoch, University of Stuttgart; Lukas Gebert, University of Stuttgart; Thomas Utschig, Universität Stuttgart; Arnulf Leuther, Fraunhofer Institute for Applied Solid State Physics; Roger Lozar, Fraunhofer Institute for Applied Solid State Physics; Ingmar Kallfass, University of Stuttgart.</td>
<td></td>
</tr>
<tr>
<td>We2A-4</td>
<td>Planar-Magic-T-Based Dual-Band Bandpass Filters</td>
<td>Xi-Bei Zhao, Xidian University; Feng Wei, Xidian University; Li Yang, University of Alcala; Roberto Gomez-Garcia, University of Alcala.</td>
<td></td>
</tr>
<tr>
<td>We2A-5</td>
<td>Multilayer Dual-Band Bandpass Filter Using Microstrip-to-Slotline Transitions and Transversal Signal-Interference Microstrip Lines</td>
<td>Li Yang, University of Alcala; Mohamed Maliki, University of Alcala; Roberto Gomez-Garcia, University of Alcala.</td>
<td></td>
</tr>
<tr>
<td>We2B-1</td>
<td>A Modular 61 GHz Vital Sign Sensing Radar System for Long-term Clinical Studies</td>
<td>Marvin Wenzel, Hamburg University of Technology; Dominik Langer, Hamburg University of Technology; Alexander Koelpin, Hamburg University of Technology; Fabian Luz, Hamburg University of Technology.</td>
<td>Fabian Lurz, Otto von Guericke University</td>
</tr>
<tr>
<td>We2B-2</td>
<td>Displacement Motion Sensing with Asynchronous Bandpass Sampling Using a Single-Channel Dual-PLL SSB Low-IF Doppler Radar</td>
<td>Fei Tong, Shanghai Jiao Tong University; Jingtao Liu, Shanghai Jiao Tong University; Changzhuan Gu, Shanghai Jiao Tong University; Junfa Mao, Shanghai Jiao Tong University.</td>
<td></td>
</tr>
<tr>
<td>We2B-3</td>
<td>Enhancing Multi-Subject Vital Sign Estimation by Utilizing the Generalized Side-lobe Canceller</td>
<td>Abdel-Kareem Moadi, University of Tennessee; Chandler J Bauder, University of Tennessee; Abdel-Hamid Djouadi, University of Tennessee; Paul Theilmann, Max-Planck-Institute of Microelectronics, LLC; Aly E Falaby, University of Tennessee.</td>
<td></td>
</tr>
<tr>
<td>We2B-4</td>
<td>Stepped-Frequency PMCW-Radar Modulation Scheme for Automotive Applications</td>
<td>Moritz Kahler, HELLA GmbH & Co. KGaA; Tai Fei, HELLA GmbH & Co. KGaA; Claus Tebruegge, HELLA GmbH & Co. KGaA; Markus Gardill, Brandenburg University of Technology.</td>
<td></td>
</tr>
<tr>
<td>We2B-5</td>
<td>Tracking Driver’s Foot Movements Using mmWave FMCW Radar</td>
<td>Davi Rodrigues, University of Texas at El Paso; Changzhi Li, Texas Tech University.</td>
<td></td>
</tr>
<tr>
<td>We2C-1</td>
<td>Towards Gbps Downlinks from Low-Cost Active Phased Arrays</td>
<td>Adam Gannon, National Aeronautics and Space Administration; James Downey, National Aeronautics and Space Administration; Bryan L Schoenholtz, National Aeronautics and Space Administration.</td>
<td>Markus Gardill, Brandenburg University of Technology</td>
</tr>
<tr>
<td>We2C-2</td>
<td>Real-time Wideband Video Synchronization via an Analog QPSK Costas Loop in a Laboratory Demonstration of an E-Band Satellite Downlink</td>
<td>Janis Woermann, University of Stuttgart; Laura Manolis, University of Stuttgart; Simon Haussmann, University of Stuttgart; Milos Krsic, IHP Microelectronics; Ingmar Kallfass, University of Stuttgart.</td>
<td></td>
</tr>
<tr>
<td>We2C-3</td>
<td>SDR based radio-frequency noise measurements</td>
<td>Giacomo Schiavolini, University of Perugia; Giulia Orecchini, Università di Perugia; Valentina Palazzi, University of Perugia; Luca Roselli, University of Perugia; Paolo Mezzanotte, University of Perugia; Guendalina Simoncini, University of Perugia; Anna Gregorio, University of Trieste; Federico Alimenti, University of Perugia.</td>
<td></td>
</tr>
<tr>
<td>We2C-4</td>
<td>Low-Cost Active Phased Arrays</td>
<td>Adam Gannon, National Aeronautics and Space Administration; James Downey, National Aeronautics and Space Administration; Bryan L Schoenholtz, National Aeronautics and Space Administration; James Downey, National Aeronautics and Space Administration; Bryan L Schoenholtz, National Aeronautics and Space Administration.</td>
<td></td>
</tr>
<tr>
<td>We2C-5</td>
<td>IDRS, a persistent, always-on connectivity for LEO spacecraft</td>
<td>Eyal J Trachtman, Addvalue Technologies.</td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Title</td>
<td>Chair/Co-Chairs</td>
</tr>
<tr>
<td>--------</td>
<td>---------------</td>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| 13:30 | RWS Session We3A | Emerging Wireless Technologies | Chair: Tejinder Signh, Dell Technologies
Co-Chair: Hong-Yeh Chang, National Central University | Texas A |
| 13:30 | WiSNet Session We3B | Advanced Signal Processing and Machine Learning Concepts in Radar Sensing | Chair: Michael Brown, Los Alamos National Laboratory
Co-Chair: Thomas Kurin, Friedrich-Alexander-Universität Erlangen-Nürnberg | Texas B |
| 13:30 | We3A-1: | DDS-based Multiphase Local Oscillator Generator for Fast-Beam-Switching Phased-Array Antennas | Authors: Shuichi Inaguma, Ritsumeikan University; Koki Nagata, Ritsumeikan University; Hideyuki Nosaka, Ritsumeikan University | |
| 13:30 | We3A-2: | Combined RF-Ultrasound Wireless Powering System for Sensor Applications in Harsh Environment | Authors: Yufei Ma, University of Glasgow; Yunan Jiang, University of Glasgow; Chong Li, University of Glasgow | |
| 13:30 | We3A-3: | The Impact of Interference on Macrodiversity Gain in mmWave Cellular Networks | Authors: Enass F Hriba, Ohio Northern University; Marwan M Alkhaweldi, Ohio Northern University | |
| 13:30 | We3A-4: | Modelling of 32-APSK Constellation Distortion and EVM in GaN Power Amplifiers From AM-AM and AM-PM curves | Authors: Gamal M Hegazi, Aethercomm Inc. | |
| 13:30 | We3A-5: | A 100 GHz Varactor-less Fundamental VCO With 12% Tuning Range in 22nm FD-SOI Technology | Authors: Nazmus Saquib, Rensselaer Polytechnic Institute; Ahmed Elmenshawi, Rensselaer Polytechnic Institute; Mona Hella, Rensselaer Polytechnic Institute | |
| 14:30 | We3B-1: | A Large-scale Movement Path Fitting Based Phased Compensation Algorithm for FMCW Radar Vital Sign Detection | Authors: Li Sun, Nanjing University of Science and Technology; Ge Bai, Nanjing University of Science and Technology; Shuaiming Huang, Nanjing University of Science and Technology | |
| 14:30 | We3B-2: | Deep Learning-based Person Detection on a Moving Robot | Authors: Jasmin Gabsteiger, Friedrich-Alexander-Universität Erlangen-Nürnberg; Thomas Kurin, Friedrich-Alexander-Universität Erlangen-Nürnberg; Christian Dorn, Technical University of Munich; Robert Weigel, Friedrich-Alexander-Universität Erlangen-Nürnberg; Fabian Lurz, Hamburg University of Technology | |
| 14:30 | We3B-3: | Gesture Recognition for FMCW Radar on the Edge | Authors: Maximilian Strobel, Infineon Technologies AG; Stephan Schoenfeldt, Infineon Technologies AG; Jonas Daugalas, Infineon Technologies AG | |
| 14:30 | We3B-4: | Device-Free Occupant Counting Using Ambient RFID and Deep Learning | Authors: Guoyi Xu, Cornell University; Edwin C Kan, Cornell University | |
| 14:30 | We3B-5: | Resonate-and-Fire Spiking Neurons for Hand Gesture Label Refinement | Authors: Ahmed Shaaban, Infineon Technologies AG; Zeineb Chaabouni, Infineon Technologies AG; Maximilian Strobel, Infineon Technologies AG; Wolfgang Further, Infineon Technologies AG; Robert Weigel, Friedrich-Alexander-Universität Erlangen-Nürnberg; Fabian Lurz, Otto von Guericke University | |
RWS Session We4A

Advancements in Wireless Sensing and Communication

Chair: Davi Rodrigues, University of Texas at El Paso

Room: Texas A

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40</td>
<td>We4A-1</td>
<td>Energy Constraints in Wireless Technologies - how to improve efficiency</td>
<td>Nuno Carvalho, Instituto De Telecomunicacoes</td>
</tr>
<tr>
<td>16:00</td>
<td>We4A-2</td>
<td>Direct Sampling Receiver with an Adjustable Bandpass Filter for Use in Passive Radar with FMRadio</td>
<td>Marie Hortbeck, Friedrich-Alexander-Universität Erlangen-Nürnberg; Jonathan Fiedelak, Friedrich-Alexander-Universität Erlangen-Nürnberg; Benedict Scheiner, FAU; Robert Weigel, University Erlangen-Nuremberg; Fabian Lurz, Hamburg University of Technology</td>
</tr>
<tr>
<td>16:40</td>
<td>We4A-4</td>
<td>Parametric Classification of Recoverable Radar-Assessed Respiratory Rate Data</td>
<td>Mohammad Shadman Ishrak, University of Hawaii at Manoa; Jannatun Noor Sameera, University of Hawaii at Manoa; Olga Boric-Lubecke, University of Hawaii at Manoa; Victor M Lubecke, University of Hawaii Manoa</td>
</tr>
<tr>
<td>17:00</td>
<td>We4A-5</td>
<td>Angular Dependency of Human Speech Recognition using Interferometry Radar</td>
<td>Christopher Williams, Texas Tech University; Changhi Li, Texas Tech University</td>
</tr>
</tbody>
</table>

WiSNet Session We4B

Emerging Concepts for Wireless Sensors

Chair: Thomas Uszmueller, University of Innsbruck

Co-Chair: Vaclav Valenta, European Space Agency

Room: Texas B

<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>15:40</td>
<td>We4B-2</td>
<td>Robust Doppler Displacement Measurement Resolving the Uncertainty During Target Stationary Moment</td>
<td>Luigi Ferro, University of Messina; Graziella Scandurra, University of Messina; Changhi Li, Texas Tech University; Emanuele Cardillo, University of Messina</td>
</tr>
<tr>
<td>16:00</td>
<td>We4B-3</td>
<td>Investigation of a Simple and Versatile Concept for OFDM Radar Target Simulator Enhancement</td>
<td>Christoph Birkenhauer, Friedrich-Alexander-Universität Erlangen-Nürnberg; Georg Körner, Friedrich-Alexander-Universität Erlangen-Nürnberg; Patrick Sierf, Friedrich-Alexander-Universität Erlangen-Nürnberg; Gerhard Hammer, Rohde & Schwarz GmbH & Co. KG; Matthias Beer, Rohde & Schwarz GmbH & Co. KG; Christian Carlowitz, Friedrich-Alexander-Universität Erlangen-Nürnberg; Martin Vossiek, Friedrich-Alexander-Universität Erlangen-Nürnberg</td>
</tr>
<tr>
<td>16:20</td>
<td>We4B-4</td>
<td>Phase Modulation Based TX Channel Calibration for MIMO Radar Systems</td>
<td>Simon Heining, Johannes Kepler University Linz; Reinhard Feger, Johannes Kepler University Linz; Thomas Faseth, Infineon Technologies Austria; Christoph Wagner, Silicon Austria Labs; Andreas Stelzer, Johannes Kepler University Linz</td>
</tr>
<tr>
<td>16:40</td>
<td>We4B-5</td>
<td>Passive Broadband Harmonic Sensor-Tag using Circular Disk Dipole Antenna</td>
<td>Nobuhiko Kuga, Yokohama National University; Iori Serizawa, Yokohama National University; Kun Xiao, Yokohama National University</td>
</tr>
<tr>
<td>Time</td>
<td>Session</td>
<td>Chair(s)</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>13:30-13:40</td>
<td>Welcome to the 102nd ARFTG Conference - Introduction</td>
<td>Conference Co-Chairs: Andrej Rumiantsev, Joe Gering, TPC Co-Chairs: Dennis Lewis and Jeffrey Jargon</td>
<td></td>
</tr>
<tr>
<td>13:40-15:00</td>
<td>Session A: Advances in Measurements I</td>
<td>Session Chair: Jeffrey Jargon</td>
<td></td>
</tr>
<tr>
<td>15:00-15:50</td>
<td>Break & Exhibits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:50-17:00</td>
<td>Session B: On-Wafer measurements and Calibration</td>
<td>Session Chair: Rusty Myers</td>
<td></td>
</tr>
<tr>
<td>08:20-09:30</td>
<td>Session C: Advances in Measurements II</td>
<td>Session Chair: Joe Gering</td>
<td></td>
</tr>
<tr>
<td>9:30-10:10</td>
<td>Break – Exhibits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:10-12:00</td>
<td>Plenary Session</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:00-13:30</td>
<td>Lunch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13:30-15:00</td>
<td>Session D: On-Wafer and EVM Measurements</td>
<td>Session Chair: Joel Dunsmore</td>
<td></td>
</tr>
<tr>
<td>15:00-15:50</td>
<td>Break – Exhibits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15:50-17:00</td>
<td>Session E: Generalized Network Analysis and Load-Pull</td>
<td>Session Chair: Dennis Lewis</td>
<td></td>
</tr>
</tbody>
</table>